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Abstract

Maxwell’s equations describe the phenomena of electromagnetism. In the first chap-
ter of this thesis we will derive these equations. For the analysis we will need to
obtain a common structure for different type of problems, which results in the curl–
curl problem.
The curl–curl problem is the starting point to obtain a weak formulation. Therefore
we will need an integration by parts formula, a trace operator and a function space
such that the expressions in the weak formulation are well defined.
A helpful tool will be the de Rham complex, which summarizes many properties of
the function spaces we will consider.
Looking forward to the finite elements, we need to find an interface condition such
that a function in a big domain can be decomposed in functions living in restricted
parts.
In the last chapter of this thesis we will create finite elements for Maxwell’s equations.
An important aim is to derive also an exact sequence for the discrete case.
Thus we will define nodal interpolation operators and consider a commuting pro-
perty. This commuting property helps us constructing the functionals for each
element space. Moreover, the commutation property satisfies that our discrete se-
quence is exact.
An important tool of the FEM is the mapping trick. Here we will consider affine
transformations and prove, that they are preserving the degrees of freedom.
Finally an interpolation error estimate is formulated.
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Zusammenfassung

Die Maxwell–Gleichungen beschreiben die Phänomene des Elektromagnetismus. Im
ersten Kapitel der Arbeit leiten wir diese her. Um die Gleichungen zu untersuchen
benötigen wir eine gemeinsame Struktur verschiedener Problemklassen – das curl–
curl Problem.
Das curl–curl Problem ist der Ausgangspunkt für unsere Variationsformulierung.
Daher benötigen wir eine Formel der partiellen Integration, einen Spuroperator und
einen Sobolevraum, dass die Ausdrücke in unserer schwachen Formulierung wohlde-
finiert sind.
Ein wichtiges Hilfsmittel wird der de Rham Komplex sein. Dieser fasst die wichtigs-
ten Eigenschafen unserer Funktionenräume kompakt zusammen.
Im Hinblick auf die Finiten Element brauchen wir noch eine Bedingung für die
Funktionen an einer Grenzfläche, sodass eine Funktion in einem größeren Gebiet in
Funktionen kleiner Gebiete unterteilt werden kann.
Im letzten Kapitel der Arbeit entwerfen wir Finite Elemente für die Maxwell–
Gleichungen. Ein bedeutendes Ziel wird die Erschaffung einer exakten Sequenz für
den endlichdimensionalen Fall sein.
Deswegen werden wir einen nodalen Interpolationsoperator definieren und betrach-
ten eine Kommutationsbedingung. Diese hilft uns bei der Konstruktion der Funk-
tionale für die einzelnen lokalen Funktionenräume. Darüberhinaus ist die Kommu-
tationsbedingung der Grund das unsere Sequenz exakt ist.
Ein wichtiges Werkzeug bei der FEM ist das Abbilden auf ein Referenzelement.
Hier werden wir nur affin lineare Abbildungen betrachten und überprüfen, ob sie die
Anforderungen unserer Funktionenräume erfüllen.
Zum Schluss ist noch eine Fehlerabschätzung für den nodalen Interpolationsoperator
angegeben.
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Chapter 1

Derivation of Maxwell’s
Equations

In 1862, James Clerk Maxwell (∗1831 - †1879) published “A Treatise on Electricity
and Magnetism”. In this paper he described the interaction between magnetic fields
and electric fields.
Maxwell’s most important research was working out and modelling a set of coupled

partial differential equations describing electromagnetic phenomena. He used earlier
research works and results of great physicists like Michael Faraday and André–
Marie Ampère. Using these equations, Maxwell confirmed the suggestion from the
early 19th century, that there is a “reasonable” model combining electricity and
magnetism.
In this chapter we want to derive Maxwell’s equations and reformulate them to

a common structure, the curl -curl problem, which will be our starting point for the
weak formulation.

1.1 Equations of Magnetic Fields

Maxwell introduced three vector functions of position x ∈ R3 and time t ∈ R to
describe a magnetic field,

H . . . magnetic field intensity (resp. magnetic field)
[
A
m

]
,

B . . . magnetic induction (resp. magnetic flux density) [T ] =
[
N
A·m

]
,

J . . . total current density
[
A
m2

]
.

Note, the SI units denotes Ampère [A], meter [m], and Newton [N ].
In the following we will use laws of physics and laws of properties of electromag-

netism to get a step closer to Maxwell’s equations.
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2 CHAPTER 1. DERIVATION OF MAXWELL’S EQUATIONS

Magnetic Field is Solenoidal
The magnetic flux density B is illustrated by closed magnetic field lines. Hence,
the magnetic field is solenoidal, i.e. it is source free, also B has no sources. This is
mathematically written as∫

∂V

B · n dsx = 0 for any bounded volume V ⊆ R3,

where n is an outer unit normal vector. In other words, B is conservative through
the surface of V .

Ampère’s Law
Current through a wire causes a magnetic field. Ampère’s law (ger.: Durchflutungs-
satz) says that the sum of the magnetic field along a closed path (∂S) is proportional
to the current causing the magnetic field through the enclosed surface S, that means∫

∂S

H · τ d`x =
∫
S

J · n dsx,

where τ is a unit tangential vector. This relation is illustrated in Figure 1.1.

H

J

Figure 1.1: Ampère’s Law

Maxwell generalized Ampère’s law: since the change of the displacement field D
leads to a flow of current we have∫

∂S

H · τ d`x =
∫
S

J · n dsx +
∫
S

∂D
∂t
· n dsx.

Remark. This generalization made by Maxwell is the reason why the equations are
called after him.
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Material Law
The system is under determined, therefore we need a material law which relates the
properties B and H. For this reason materials are distinguished by their magnetic
behaviour:

• diamagnetic materials (e.g. Copper, Silver): magnetization opposes magnetic
field

• paramagnetic materials (e.g. Aluminium): magnetization in the same direction
as magnetic field

• ferromagnetic materials (e.g. Iron): magnetization can be independent of mag-
netic field; complex relation

• superconductors: may have diamagnetic properties under certain circumstan-
ces or have a complex hysteretic dependence of B and H

Here we assume a linear relation (therefore we have either diamagnetic or paramag-
netic materials), so we can describe

B = µH,

where µ is called permeability.

1.2 Equations of Electric Fields
The phenomena of electric fields are described by

E . . . electric field intensity (resp. electric field)
[
V
m

]
,

D . . . electric displacement field (resp. displacement current density)
[
As
m2

]
,

jc . . . electric current density
[
A
m2

]
,

ρ . . . charge density
[
As
m3

]
.

Note, the SI units denotes Volt [V ], meter [m], and seconds [s].

Faraday’s Induction Law
Consider a wire which forms a closed loop ∂S. Faraday discovered that a change of
the magnetic flux B trough the surface S, spanned by the wire, induces a voltage in
the loop and creates an electric field E – see Figure 1.2. That means

∫
S

∂B
∂t
· n dsx = −

∫
∂S

E · τ d`x.
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∂S

S

∂B
∂t

E

Figure 1.2: Faraday’s Induction Law

Gauss’s Law
This law describes how electric charges cause an electric field. It has the form∫

∂V

D · n dsx =
∫
V

ρ dx. (1.1)

Ohm’s Law
In conducting materials, e.g. copper, the electric field induces a current with density
jc. Ohm’s law says that jc and E are proportional, i.e.

jc = σE with J = jc + j i,

where σ is called electric conductivity and j i the impressed current density.

Material Law
The electric field density E and the corresponding displacement current density D
are coupled by the electric permittivity ε, i.e.

D = εE .

1.3 Maxwell’s Equations
In the next step we want to derive Maxwell’s equations in differential formulation.
They are a system of four PDE’s which describe all phenomena of electromagnetism.
We assume smooth fields, so we can apply Gauss’s theorem and Stoke’s theorem.

1.3.1 Reformulating Magnetic Field Equations
So, by Gauss’s theorem we can reformulate the property that B is conservative on
V to

0 =
∫
∂V

B · n dsx Gauss=
∫
V

divB dx ∀V ⊆ R3.
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Because of the fundamental lemma of calculus of variations, it follows

divB = 0.

Applying Stokes’ theorem on Ampère’s law we obtain∫
S

∂D
∂t
· n dsx +

∫
S

J · n dsx =
∫
∂S

H · τ d`x =
∫
S

curlH · n dsx.

The formula above is valid for all S and the integrand is continuous. Due to the
fundamental lemma of calculus of variations we obtain

curlH = ∂D
∂t

+ J. (1.2)

1.3.2 Reformulating Electric Field Equations
We use Stoke’s theorem to get Faraday’s law in differential form, namely

−curlE = ∂B
∂t
.

Applying Gauss’s theorem on (1.1) in combination with the fundamental lemma of
calculus of variations, we get

divD = ρ. (1.3)

1.3.3 Result – Maxwell’s Equations
We derived Maxwell’s equations, namely

curlH = ∂D
∂t

+ Jtot, (1.4a)

curlE = −∂B
∂t
, (1.4b)

divB = 0, (1.4c)
divD = ρ, (1.4d)

combined with the material laws

B = µH, D = εE and jc = σE . (1.5)

1.4 The Curl–Curl Problem
Several regimes of Maxwell’s equations have a common structure, e.g. the magneto-
static problem, the time–harmonic problem and time stepping methods.
This common structure is in our interest to treat in a common framework. To take

a look at these types of problems, we have to derive the vector potential formulation
of Maxwell’s equations.
Before we start reformulating, we will consider the de Rham complex.
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1.4.1 The de Rham complex
Before we can derive the vector potential formulation of Maxwell’s equations we
have to do some preparation work. We want to show that the div and curl operator
are surjective. Therefore we need the de Rham complex, which can be seen in
Figure 1.3.

R id−→ H1(Ω) ∇−→ H(curl,Ω) curl−→ H(div,Ω) div−→ L2(Ω) 0−→ {0}

Figure 1.3: The de Rham sequence

The main property of de Rham is the coincidence of ranges and kernels of consecutive
(ger.: aufeinanderfolgend) operators. For bounded, simply connected domains
(no wholes or inclusions), the following identities hold

ker(∇) = R,
ker(curl, H(curl,Ω)) = ∇H1(Ω),

ker(div, H(div,Ω)) = curl(H(curl,Ω)),
L2(Ω) = div(H(div,Ω)).

In detail, we will need the following two identities in the next subsection:

• div operator is surjective
For a B ∈ H(div,Ω) it holds:

divB = 0 de Rham⇒ ∃A ∈ H(curl,Ω) : curlA = B. (1.6)

Here we show ∇H1(Ω) ⊆ ker(curl, H(curl,Ω). We use the classical results

curl∇v = 0 ∀v ∈ C∞(Ω),
div curl v = 0 ∀v ∈ [C∞(Ω)]3 ,

and show, that they also hold in the weak sense.
Let w ∈ H1(Ω) and ṽ ∈ [C∞0 (Ω)]3. With the definition of the weak gradient
we have ∫

Ω

∇w · curl ṽ dx = −
∫
Ω

w · div curl ṽ︸ ︷︷ ︸
=0

dx = 0.

By computing the weak curl of ∇w ∈ [L2(Ω)]3,∫
Ω

curl∇w · v dx =
∫
Ω

∇w · curl v dx = 0 ∀v ∈ [C∞0 (Ω)]3 ,

we get that

curl∇w = 0 ∀w ∈ H1(Ω).
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Then, by using the definition of the weak curl we have for a function u ∈
H(curl,Ω)∫

Ω

curlu · ∇ṽ dx =
∫
Ω

u · curl∇ṽ dx = 0 ∀ṽ ∈ C∞0 (Ω).

By computing the weak divergence of the line above we obtain∫
Ω

div curlu · v dx =
∫
Ω

curlu · ∇v dx = 0 ∀v ∈ C∞0 (Ω)

and finally

div curlu = 0 ∀u ∈ H(curl ,Ω).

The other direction can be seen in [5].

• curl operator is surjective
For an A ∈ H(curl,Ω) it holds:

curlA = 0 de Rham⇒ ∃ϕ ∈ H1(Ω) with
∫
Ω

ϕ dx = 0 : −∇ϕ = A. (1.7)

A proof of this statement can be found in [5] (Theorem 18).

With this knowledge we can start reformulating.

1.4.2 Vector Potential Formulation of Maxwell’s Equations
Starting point is Ampère’s law in differential form

curlH = ∂D
∂t

+ J,

with the material laws

D = εE , J = σE + j i, B = µH ⇒ H = µ−1B.

We know that divB = 0 and because of (1.6), there exists a vector potential A such
that

B = curlA.

Plugging in in Ampère’s law leads to

curl
(
µ−1curlA

)
= ε

∂E
∂t

+ σE + j i. (1.8)
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Our goal is to get rid of the E . We only want to have one variable A on the left
hand side. Reformulating Faraday’s law leads to

curlE = −∂B
∂t

⇐⇒ curlE = − ∂

∂t
curlA ⇐⇒ curl

(
E + ∂A

∂t

)
= 0.

Applying the knowledge that the curl operator is surjective, (1.7), means

curl
(

E + ∂A
∂t

)
= 0 ⇒ ∃ scalar potentialϕ : E = −∇ϕ− ∂A

∂t
.

Therefore, (1.8) can be expressed by

curl
(
µ−1curlA

)
+ ε

∂2A
∂t2

+ σ
∂A
∂t

= j i − σ∇ϕ− ε
∂∇ϕ
∂t

.

We see, that for any arbitrary scalar function ψ the potentials
Ã = A +∇ψ,

ϕ̃ = ϕ− ∂ψ

∂t

satisfy the equation above (plugging in and using Schwarz). By choosing a vector
potential A∗ such that

A∗ = A +
t∫

t0

∇ϕ d t̃

we get

E = −∂A
∗

∂t
, curlA = curlA∗.

For convenience, we can introduce

E = −∂A
∂t

and finally obtain the vector potential formulation of Maxwell’s equations

curl
(
µ−1curlA

)
+ ε

∂2A
∂t2

+ σ
∂A
∂t

= j i. (1.9)

This will be our starting point of analyzing different types of problems in the next
subsections.

1.4.3 Time–Harmonic Problem
Many applications in electrical engineering use time–harmonic functions, i.e.

j i(x, t) = Re
(
j i(x)eiωt

)
, A(x, t) = Re

(
A(x)eiωt

)
.

In this scenario, a time derivation in (1.9) leads to a multiplication with iω. The
time–harmonic vector potential formulation then reads

curl
(
µ−1curlA

)
+
(
iωσ − ω2ε

)
A = j i,

where A is unknown and j i is known. The term (iωσ − ω2ε) =: κ is depending on
the type of problem.



1.4. THE CURL–CURL PROBLEM 9

1.4.4 Time Stepping Method
For simplicity we consider a time stepping method for the special regime ε = 0 and
σ = 1. Hence, (1.9) simplifies to

curl
(
µ−1curlA

)
+ ∂A

∂t
= j i.

Using a simple time stepping method leads to the approximation

∂A
∂t

(tk+1) ≈ Ak+1 − Ak

∆t ,

where Ak := A(tk).

A0

tk tk+1

By applying this approximation we obtain

curl
(
µ−1curlAk+1

)
+ 1

∆t︸︷︷︸
=:κ

Ak+1 = j i + 1
∆tA

k.

where the right hand side is known and Ak+1 is unknown.

1.4.5 Result – Curl–Curl Problem
The common structure we have seen in the previous subsections is

curl
(
µ−1curlA

)
+ κA = j i,

where κ is depending on the type of the considered problem, e.g. (iωσ − ω2ε) for
the time–harmonic problem or 1/∆t for the time stepping method.
The function we are interested in is A. This unknown function is used to calculate

the magnetic induction B = divA and the electric field intensity E = −∂A/∂t. For
mathematical analysis we will define our unknown function as u.
In view of deriving a weak formulation and since we know j i, we will define the

right hand side as f .
The starting point of our analysis is the curl–curl problem which reads as

curl
(
µ−1curlu

)
+ κu = f. (1.10)





Chapter 2

Variational Framework

In this chapter we want do derive a weak formulation of the curl–curl problem (1.10).
In this work we only consider a special regime. We set µ−1 = 1 and κ = 1, thus our
curl–curl problem simplifies to

curl curlu+ u = f, (2.1)

for an unknown function u and a given right hand side f . Starting with (2.1), we get
the weak formulation by multiplying it with a suitable test function v, integrating
the equation over our computational domain Ω, integration by parts of the main
part and adding boundary conditions.
At the end of this chapter we want to derive the variational problem: Find u ∈

H(curl,Ω) with u× n = 0, such that
∫
Ω

curlu · curl v dx+
∫
Ω

u · v dx =
∫
Ω

f · v dx ∀v ∈ H(curl,Ω), (2.2)

with v × n = 0.

2.1 Integration by Parts
To derive the variational formulation the main part is integrated by parts. Let
Ω ⊆ R3 be a bounded domain with boundary ∂Ω and outer unit normal vector n.
In (2.1) we can not use the standard integration by parts formula

∫
Ω

u · ∂v
∂xi

dx = −
∫
Ω

∂u

∂xi
· v +

∫
∂Ω

(u · ni) · v dsx. (2.3)

Our goal is to obtain an integration by parts formula which can be applied on the
main part of (2.1). The following lemma yields the needed integration by parts
formula.

11
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Lemma 2.1 (Integration by Parts). For smooth functions the identity∫
Ω

curlu · v dx =
∫
Ω

u · curl v dx−
∫
∂Ω

(u× n) · v dsx (2.4)

holds.

Proof. We use (2.3) on every term of
∫

Ω curlu · v dx, i.e.

∫
Ω

curlu · v dx =
∫
Ω

∇× u · v dx =
∫
Ω


∂u3
∂x2
− ∂u2

∂x3

−∂u3
∂x1

+ ∂u1
∂x3

∂u2
∂x1
− ∂u1

∂x2

 ·
v1
v2
v3

 dx

=
∫
Ω

[
∂u3

∂x2
v1 −

∂u2

∂x3
v1 −

∂u3

∂x1
v2 + ∂u1

∂x3
v2 + ∂u2

∂x1
v3 −

∂u1

∂x2
v3

]
dx

=
∫
Ω

[
−u3

∂v1

∂x2
+ u2

∂v1

∂x3
+ u3

∂v2

∂x1
− u1

∂v2

∂x3
− u2

∂v3

∂x1
+ u1

∂v3

∂x2

]
dx

−
∫
∂Ω

[−(u3 · n2) · v1 + (u2 · n3) · v1 + (u3 · n1) · v2

−(u1 · n3) · v2 − (u2 · n1) · v3 + (u1 · n2) · v3] dsx

=
∫
Ω

[
u1

(
∂v3

∂x2
− ∂v2

∂x3

)
+ u2

(
∂v1

∂x3
− ∂v3

∂x1

)
+ u3

(
∂v2

∂x1
− ∂v1

∂x2

)]
dx

−
∫
∂Ω

[(u2 · n3 − u3 · n2) · v1 − (u3 · n1 − u1 · n3) · v2

+(u1 · n2 − u2 · n1) · v3] dsx

=
∫
Ω

u · curl v dx−
∫
∂Ω

(u× n) · v dsx.

2.2 Function Space H(curl,Ω)
To derive the variational problem (2.2) we need to introduce a weak curl. To moti-
vate this definition we look at the integration by parts formula (2.4).

Definition 2.2 (Weak Curl). For u ∈ [L2(Ω)]3 we call curlu ∈ [L2(Ω)]3 the weak
curl of u, if ∫

Ω

curlu · ϕ dx =
∫
Ω

u · curlϕ dx ∀ϕ ∈ [C∞0 (Ω)]3.
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This definition of a weak differential operator motivates to define a function space,
where all functions have a weak curl. By using this function space we ensure that
all expressions in (2.2) are well–defined.

Definition 2.3 (H(curl,Ω)). The space of three–dimensional vector functions with
curl in [L2]3 is defined by

H(curl,Ω) :=
{
u ∈ [L2(Ω)]3 : curlu ∈ [L2(Ω)]3

}
,

with the semi–norm and norm

|u|H(curl,Ω) := ||curlu||[L2(Ω)]3 ,

||u||H(curl,Ω) :=
[
||u||2[L2(Ω)]3 + ||curlu||2[L2(Ω)]3

] 1
2 .

Remark. By a density argument, an equivalent definition of H(curl,Ω) is given by

H(curl,Ω) := C∞
(
Ω
)||·||H(curl,Ω)

,

which is by definition a Hilbertspace.
By using Definition 2.3 we have to show, that [C∞(Ω)]3 is dense in H(curl,Ω). For
this proof we need a domain Ω with Lipschitz boundary, the existence of smoothing
transformations φε and commuting smoothing operators. This is carried out in [5].
We see that this is the natural function space for solving the curl–curl problem.
The space H(curl,Ω) has less smoothness than H1(Ω), only tangential continuity
over material interfaces, as we will see in Section 2.5. This condition holds with the
physical properties of electric and magnetic fields.

2.3 Trace Operator and Boundary Conditions
In our integration by parts formula (2.4) we have an integral over ∂Ω. To show that
this expression is well defined we need a trace operator. We remember the trace
operator in H1(Ω),

tr∂Ω : H1(Ω)→ H
1
2 (∂Ω), (tr∂Ω w)(x) := w(x) ∀x ∈ ∂Ω,

||tr∂Ω w||
H

1
2 (∂Ω)

≤ ctr ||w||H1(Ω) ∀w ∈ H1(Ω).

We also need the inverse trace theorem. Let g ∈ H 1
2 (∂Ω), then

∃w ∈ H1(Ω) : tr∂Ωw = g with ||w||H1(Ω) ≤ citr||g||
H

1
2 (∂Ω)

.

When speaking about traces in H(curl,Ω), we define the trace operator as

trτ : H(curl,Ω)→ [H− 1
2 (∂Ω)]3, u 7→ u× n.

Note that (H− 1
2 (∂Ω))∗ = H

1
2 (∂Ω). Before we can show the continuity of the trace

operator, we need the following estimate.
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Lemma 2.4. For a w ∈ [H1(Ω)]3 we have the estimate

||curlw||[L2(Ω)]3 ≤
√

3 ||∇w||[L2(Ω)]3 .

Proof. We consider the first component of curlw. We have

||∂x2w3 − ∂x3w2||L2(Ω) ≤ ||∂x2w3||L2(Ω) + ||∂x3w2||L2(Ω) + ||∂x1w1||L2(Ω)

Analog we have for the other components

||∂x3w1 − ∂x1w3||L2(Ω) ≤ ||∂x3w1||L2(Ω) + ||∂x1w3||L2(Ω) + ||∂x2w2||L2(Ω),

||∂x1w2 − ∂x2w1||L2(Ω) ≤ ||∂x1w2||L2(Ω) + ||∂x2w1||L2(Ω) + ||∂x3w3||L2(Ω).

Combining the estimates from above, we have that

||curlw||2[L2(Ω)]3 =
3∑
i=1
||[curlw]i||2L2(Ω)]3

= ||∂x2w3 − ∂x3w2||2L2(Ω) + ||∂x3w1 − ∂x1w3||2L2(Ω)

+ ||∂x1w2 − ∂x2w1||2L2(Ω)

≤
(
||∂x2w3||L2(Ω) + ||∂x3w2||L2(Ω) + ||∂x1w1||L2(Ω)

)2

+
(
||∂x3w1||L2(Ω) + ||∂x1w3||L2(Ω) + ||∂x2w2||L2(Ω)

)2

+
(
||∂x1w2||L2(Ω) + ||∂x2w1||L2(Ω) + ||∂x3w3||L2(Ω)

)2

≤ 3
(
||∂x1w1||2L2(Ω) + ||∂x2w1||2L2(Ω) + ||∂x3w1||2L2(Ω)

+ ||∂x1w2||2L2(Ω) + ||∂x2w2||2L2(Ω) + ||∂x3w2||2L2(Ω)

+ ||∂x1w3||2L2(Ω) + ||∂x2w3||2L2(Ω) + ||∂x3w3||2L2(Ω)

)
= 3 ||∇w||2[L2(Ω)]3 .

With this curl–estimate we can show, that ||trτ u||[H− 1
2 (∂Ω)]3

≤ ctr||u||H(curl,Ω). For
u ∈ [C∞(Ω)]3 we have

||trτ u||[H− 1
2 (∂Ω)]3

= sup
06=v∈[H

1
2 (∂Ω)]3

〈u× n, v〉
||v||

[H
1
2 (∂Ω)]3

= sup
0 6=v∈[H

1
2 (∂Ω)]3

∫
Ω

(u× n) · v dsx

||v||
[H

1
2 (∂Ω)]3

(2.3)= sup
06=v∈[H

1
2 (∂Ω)]3

∫
Ω
u · curl v dx−

∫
Ω
curlu · v dx

||v||
[H

1
2 (∂Ω)]3

≤ sup
06=w∈[H1(Ω)]3

∫
Ω
u · curlw dx−

∫
Ω
curlu · w dx

c−1
itr ||w||[H1(Ω)]3
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≤ citr sup
0 6=w∈[H1(Ω)]3

∫
Ω
|u · curlw| dx+

∫
Ω
|curlu · w| dx

||w||[H1(Ω)]3

≤ citr sup
06=w∈[H1(Ω)]3

||u||[L2(Ω)]3||curlw||[L2(Ω)]3 + ||curlu||[L2(Ω)]3||w||[L2(Ω)]3

||w||[H1(Ω)]3

≤ citr sup
0 6=w∈[H1(Ω)]3

√
3 ||u||[L2(Ω)]3 ||∇w||[L2(Ω)]3 + ||curlu||[L2(Ω)]3 ||w||[L2(Ω)]3

||w||[H1(Ω)]3

≤
√

3 citr sup
06=w∈[H1(Ω)]3

[
||u||2[L2(Ω)]3 + ||curlu||2[L2(Ω)]3

] 1
2
[
||∇w||2[L2(Ω)]3 + ||w||2[L2(Ω)]3

] 1
2

[
||w||2[L2(Ω)]3 + ||∇w||2[L2(Ω)]3

] 1
2

≤
√

3 citr||u||H(curl,Ω).

Thus, the trace on ∂Ω is well defined. Now we need to find useful boundary condi-
tions. When deriving our weak formulation we will consider the integral∫

∂Ω

(curlu× n) · v dsx.

We can write

(curlu× n) · v = (curlu× n) · ((v × n)× n) ,

where

• curlu× n is a natural boundary,

• ((v × n) × n) is an essential boundary. Moreover, v × n is the tangential
component of v.

In this thesis we will use the boundary conditions u× n = 0 and v × n = 0.

2.4 Weak Formulation
We integrate (2.1) over the computational domain Ω and multiply it with a proper
test function v, i.e.∫

Ω

curl (curlu) · v dx+
∫
Ω

u · v dx =
∫
Ω

f · v dx.

Using integration by parts for the main part leads to∫
Ω

curl (curlu) · v dx =
∫
Ω

curlu · curl v dx−
∫
∂Ω

(curlu× n) · v dsx.
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Thus, we obtain the variational formulation∫
Ω

curlu · curl v dx+
∫
Ω

u · v dx =
∫
Ω

f · v dx+
∫
∂Ω

(curlu× n) · v dsx,

and including our boundary conditions finally leads to:
Find u ∈ H(curl,Ω) with u× n = 0, such that∫

Ω

curlu · curl v dx+
∫
Ω

u · v dx =
∫
Ω

f · v dx. (2.5)

for all v ∈ H(curl,Ω) with v × n = 0.
We finally obtained a weak formulation of Maxwell’s equations.

With the lemma of Lax–Milgram we get, that there is a unique solution for (2.5).
Since the functional

f(v) =
∫
Ω

f · v dx
C.S.
≤ ||f ||[L2(Ω)]3||v||[L2(Ω)]3 ≤ ||f ||[L2(Ω)]3||v||H(curl,Ω),

is bounded, and a(u, v) is bounded and coercive

a(v, v) ≥ ca1||v||2H(curl,Ω) ∀v ∈ V,
a(u, v) ≤ ca2||u||H(curl,Ω)||v||H(curl,Ω) ∀u, v ∈ V,

with ca1 = ca2 = 1, we can apply Lax–Milgram.

2.5 Interface Condition
In this section we want to find a condition for u on the interface Γ = Ω1 ∩ Ω2, such
that for u1 ∈ H(curl,Ω1) and u2 ∈ H(curl,Ω2) we can write

u(x) =

u1(x) for x ∈ Ω1

u2(x) for x ∈ Ω2

 ∈ H(curl,Ω). (2.6)

The decomposition into two domains is illustrated in Figure 2.1, where n is an outer
unit normal vector pointing from the region Ω1 to Ω2. The outer unit normal vector
for Ω2 is −n.
The following lemma shows the wanted interface condition (2.7), such that we can
combine two functions which are joined via an interface Γ.

Lemma 2.5. Let u1 ∈ H(curl,Ω1), u2 ∈ H(curl,Ω2) and u is defined by (2.6). Let
n be an outer unit normal vector from Ω1. If

u1 × n = u2 × n on Γ, (2.7)

then u ∈ H(curl ,Ω).
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Interface Γ

n

Ω1

u1 ∈ H(curl,Ω1)
Ω2

u2 ∈ H(curl,Ω2)

Ω = Ω1 ∪ Ω2

Figure 2.1: Schematic of finding the interface condition for decomposition

Proof. We have to show, that∫
Ω

curlu · v dx =
∫
Ω

u · curl v dx ∀v ∈ [C∞0 (Ω)]3 ,

then u ∈ H(curl,Ω). For v ∈ [C∞0 (Ω)]3 it holds∫
Ω

curlu · v dx =
∫

Ω1∪Ω2

curlu · v dx

=
∫

Ω1

curlu1 · v dx+
∫

Ω2

curlu2 · v dx

=
∫

Ω1

u1 · curl v dx−
∫
Γ

(u1 × n) · v dx

+
∫

Ω2

u2 · curl v dx−
∫
Γ

−(u2 × n) · v dx

=
∫

Ω1

u1 · curl v dx+
∫

Ω2

u2 · curl v dx−
∫
Γ

((u1 × n)− (u2 × n)︸ ︷︷ ︸
=0

) · v dx

=
∫

Ω1

u1 · curl v dx+
∫

Ω2

u2 · curl v dx

=
∫

Ω1∪Ω2

u · curl v dx

=
∫
Ω

u · curl v dx.





Chapter 3

Finite Elements for Maxwell
Equations

When we speak about finite elements, we do this in the sense of Ciarlet in [2].
In order to apply the Galerkin method we have to construct finite element spaces
Xh of X, where X is for example H1(Ω), H(curl,Ω) or H(div,Ω). We have to
consider three basic aspects. First, a triangulation over the computational domain
Ω is needed. Secondly, after having fixed a finite element space Xh, we want to
define the local finite–dimensional spaces

XT := {vh|T : vh ∈ Xh} , (3.1)

which contain polynomials. The third basic aspect of the finite element method is,
that there exists at least one canonical basis of Xh such that the corresponding basis
functions have small support.

Here we want to find global functionals, which form a basis for Xh and local element
spaces XT . Then the finite element spaces Xh are fixed. When finding this spaces
we want to derive a discrete exact sequence – cf. the de Rham complex.
We define nodal interpolation operators which satisfy a commuting property. By

considering this condition we will create an exact sequence. To satisfy Xh ⊆ X, we
have to show, that a function in Xh is also contained in the Sobolev space X.
After that we will take a look on transformations. By using this principle, many

calculations can be done a–priori on a reference element. By defining such transfor-
mations one has to take care, that the global functionals are preserved.
Finally, an interpolation error estimate is formulated.

3.1 Triangulation and Finite Element
When speaking about finite elements, we need a triangulation of our computational
domain Ω ⊆ R3. Here we assume that Ω is a bounded polyhedral domain with
Lipschitz boundary.

19
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Definition 3.1. A triangulation resp. a mesh Th is a finite non–overlapping sub-
division of Ω into elements Ti of simple geometry.
A triangulation is called admissible, if

• the elements are non–overlapping, i.e.

interior(Ti) ∩ interior(Tj) = ∅ for i 6= j.

• the triangulation Th is a covering of Ω, i.e.⋃
Ti∈Th

Ti = Ω.

• the intersection of two different elements is either empty, or a vertex, or an
edge or a face of both elements.

After having the most characteristic aspect of the finite element method, the trian-
gulation, we can define a finite element.

Definition 3.2 (Finite Element). The triple (T,XT , BT ) is called a finite element
where

• T ⊂ Rn is called the element domain (bounded closed set with non–empty
interior and piecewise smooth boundary),

• XT is the space of shape functions (finite–dimensional space of functions on
T ),

• BT = {fT1 , fT2 , . . . , fTk } is the set of nodal variables.

Remark. The set of nodal variables are also called degrees of freedom (dofs).

The main effort by constructing finite elements is to verify the unisolvence. We show
this by an equivalent property of the basis property:

If v ∈ XT with fTi v = 0 for all i, then v ≡ 0.

To describe a v ∈ XT we define a basis for the space. This basis is called the nodal
basis.

Definition 3.3 (Nodal Basis). Let (T,XT , BT ) be a finite element. The basis

{ϕ1, ϕ2, . . . , ϕk} of XT ,

which is dual to the set of nodal variables BT (i.e. fi(ϕj) = δij) is called the nodal
basis of XT .
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3.2 Discrete Exact Sequence
Looking at (3.1) we see, that having the global functionals which form a basis forXh,
and defining the local element spaces XT , fixes the finite element space Xh. In this
section we want to find such functionals and the local element spaces. Furthermore,
we want to derive a commuting diagram which is exact, i.e. that the image of the
previous differential operator is the kernel of the following one.

H1(Ω) ∇−→ H(curl,Ω) curl−→ H(div,Ω) div−→ L2(Ω)

⊂ ⊂ ⊂ =

W V Q S

I∇ Icurl Idiv I0

Wh
∇−→ Vh

curl−→ Qh
div−→ Sh

To get exactness we assume, that the sequence

H1(Ω) ∇−→ H(curl,Ω) curl−→ H(div,Ω) div−→ L2(Ω)

⊂ ⊂ ⊂ ⊂

C∞(Ω) ∇−→ [C∞(Ω)]3 curl−→ [C∞(Ω)]3 div−→ C∞(Ω)

is exact. We know that the lower line of the sequence is exact and because of density
and by constructing commuting smoothing operators also the higher line – cf. [5].

3.2.1 Interpolation Operator
In this work we only consider nodal interpolation operators. In the sequence we want
to derive, we have appropriate subspaces W,V,Q, S of the corresponding function
spaces. We need them, because our operators are not well defined on the whole
function space (e.g. point evaluation is not well defined in H1).

Definition 3.4 (Nodal Interpolation Operator). Let X be a space and Xh the
corresponding FE space of X. The nodal interpolation operator IX : X → Xh is
defined by

IX(x) :=
N∑
i=1

fi(x)ϕi,

where fi are the global functionals and ϕi is the nodal basis of X.

Remark. An alternative are Clémént type operators which involve non local aver-
aging over patches. This type of operators require less smoothness.

Lemma 3.5. The Nodal Interpolation Operator is a projection, i.e.

IX
(
IX(x)

)
= IX(x).
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Proof. The nodal basis {ϕi}Ni=1 can be associated with the global functionals {fj}Nj=1
with the property

fj(ϕi) = δij =

1 if i = j,

0 else,
for i, j = 1, . . . , N.

Moreover it holds

fj
(
IX(x)

)
=

N∑
i=1

fi(x)fj(ϕi) = fj(x).

That means

fj
(
IX(x)

)
ϕj = fj(x)ϕj ⇐⇒

N∑
j=1

fj
(
IX(x)

)
ϕj =

N∑
j=1

fj(x)ϕj,

and by using the definition of the nodal interpolation operator the result follows.

Next, we want to find a condition which says, when our nodal interpolation operators
commute. Considering this condition helps us to derive an exact sequence.

3.2.2 Commuting Property
We pick out two spaces and investigate the interpolation operators and a differential
operator D.

A
D−→ B

IA IB

Ah
D−→ Bh

We say that the interpolation operators commute, if

D IAa = IBDa ∀a ∈ A. (3.2)

An equivalent condition when the interpolation operators commute can be obtained
by using Lemma 3.5.

D IAa = IBDa ∀a ∈ A,
m

IBD IAa = IBDa ∀a ∈ A,
m

IB(D (a− IA)︸ ︷︷ ︸
=:e...error

) = 0 ∀a ∈ A
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Lemma 3.6 (Exactness of Sequence). Let

A
D1−→ B

D2−→ C

be an exact sequence, i.e. ker(D2, B) = D1(A). If the interpolation operators com-
mute, then also the lower sequence of

A
D1−→ B

D2−→ C

IA IB IC

Ah
D1−→ Bh

D2−→ Ch

is exact, i.e. ker(D2, Bh) = D1(Ah).

Proof. “⊇”: Since Bh ⊆ B we have

ker(D2, Bh) = {bh ∈ Bh : D2bh = 0} ⊆ {b ∈ B : D2b = 0} = ker(D2, B).

For an ah ∈ Ah we know D1ah ∈ Bh. By using the exactness of the upper sequence
we obtain

D1ah ∈ D1(Ah) ⊆ D1(A) = ker(D2, B).

Since D1ah ∈ ker(D2, B) it follows D1ah ∈ ker(D2, Bh) which implies D1(Ah) ⊆
ker(D2, Bh).
“⊆”: Let bh ∈ ker(D2, Bh). Because of ker(D2, Bh) ⊆ ker(D2, B)

∃ a ∈ A : D1a = bh.

By using (3.2) it follows

bh = IBbh = IBD1a = D1I
Aa = D1ah.

Hence, ker(D2, Bh) ⊆ D1(Ah).

3.2.3 Global Functionals
One step to fix our finite element space Xh is to define the global functionals. If
we consider the commuting property, we ensure that the discrete sequence will be
exact.
We start on the end of the sequence, i.e. we define the global functionals for X0

h ⊆
L2(Ω). The functional we use is given by

f 0
T (s) :=

∫
T

s(x) dx for all tetrahedra T. T

The interpolation operator is given by

I0(s) :=
∑
T∈T

f 0
T (s)ϕ0

T ,
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where ϕ0
Ti

are the nodal basis functions and T the set of tetrahedra. It is well known
that

I0(s) = 0 ⇔ f 0
T (s) = 0 ∀T ∈ T .

Therefore, the commuting property changes to

f 0
T

(
div (q − Idiv︸ ︷︷ ︸

=:ediv

)
)

= 0 ∀T ∈ T .

Using Gauss’s theorem we obtain

0 =
∫
T

div ediv dx =
∫
∂T

ediv · n dsx =
∑
F∈F

∫
F

ediv · nFk
dsx,

where F is the set of faces of T . This motivates to define the functional for the
previous subspace Xdiv

h ⊂ H(div,Ω),

fdiv
F (q) :=

∫
F

q(x) · nF dsx, F

where Fk is a face of the tetrahedron and n denotes the unit outer normal vector.
Now we look at the condition

fdiv
F

(
curl (v − Icurl︸ ︷︷ ︸

=:ecurl

)
)

= 0 ∀F ∈ F .

Using Stokes’ theorem we obtain

0 =
∫
F

curl ecurl dx =
∫
∂F

ecurl · τ d`x =
∑
E∈E

∫
E

ecurl · τE d`x,

where E is the set of edges of F . This motivates to define the functional for the
previous subspace Xcurl

h ⊂ H(curl,Ω),

f curl
E (v) :=

∫
E

v(x) · τE d`x, E

where E is an edge of the face. Now we consider the condition

f curl
E

(
∇(w − Igrad︸ ︷︷ ︸

=:egrad

)
)

= 0 ∀E ∈ E .

Using the fact that∇egrad·τ is the tangential derivative and the fundamental theorem
of calculus we obtain

0 =
∫
E

∇egrad · τE d`x = egrad(Vj)− egrad(Vi),
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where Vj, Vi are the two outer vertices of the edge E. The point evaluation is the
functional used in Xgrad

h ⊂ H1(Ω), i.e.

f grad
V (w) := w(V ), V

where V is a vertex of an edge.

Since we defined all global functionals respectively the degrees of freedom in the
discrete spaces, we consider the local element spaces XT to fix the finite element
spaces Xh next.

3.2.4 Local Element Spaces
The last step to fix Xh is to define the local element spaces XT . With our choice we
will also get, that the discrete sequence is exact. Consider the following sequence:

R
id

Xgrad
T

∇

Xcurl
T

→
→←

→

←

L99
curl

Xdiv
T

L9
9

←

←

L99 div

X0
T

0 {0}

We know that the local element spaces for Xgrad
h ⊂ H1(Ω) and X0

h ⊂ L2(Ω) are
given by

Xgrad
T :=

{
c1 +

a1
a2
a3

 : c1, a1, a2, a3 ∈ R
}

with dimXgrad
T = 4

respectively

X0
T := {c1 : c1 ∈ R} with dimX0

T = 1.

With this local element spaces we have fixed Xgrad
h and X0

h. Next, we want to find
Xcurl
T and Xdiv

T .
We know that the gradient of a linear function, which is contained in Xgrad

T , is
constant. Thus we look for linear functions such that the kernel of the curl is given
only by constants. Hence we define

Xcurl
T :=

{c1
c2
c3

+

a1
a2
a3

×
x1
x2
x3

 : c1, c2, c3, a1, a2, a3 ∈ R
}

with dimXcurl
T = 6.

Remark. Xcurl
T in combination with f curl

E is also called the Nédélec element of first
kind of order zero.

Therefore we have for a vT ∈ Xcurl
T that

curl vT = curl
(c1

c2
c3

+

a1
a2
a3

×
x1
x2
x3

) = 2

a1
a2
a3

 ,
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that means

curl vT = 0 ⇒ vT =

c1
c2
c3

 ∈ [P0(T )]3 .

Again for Xdiv
h ⊂ H(div,Ω), we look for functions such that the kernel of the diver-

gence of these functions is given only by constants. Thus we introduce

Xdiv
T :=

{c1
c2
c3

+ a1

x1
x2
x3

 : c1, c2, c3, a1 ∈ R
}

with dimXdiv
T = 4.

Remark. Xdiv
T in combination with fdiv

E is also called the Raviart–Thomas element
of first kind of order zero. Although Nédélec was the first one in 3d, these finite
elements are called after Pierre–Arnaud Raviart and Jean–Marie Thomas, who found
them in 2d first.
Considering a qT ∈ Xdiv

T provides

div qT = div
(c1

c2
c3

+ a1

x1
x2
x3

) = 3a1,

that means

div qT = 0 ⇒ qT =

c1
c2
c3

 ∈ [P0(T )]3 .

Summarizing we have

∇Xgrad
T ⊆ Xcurl

T , curlXcurl
T ⊆ Xdiv

T , divXdiv
T = X0

T .

To get exactness of the discrete sequence we have to check, if the derived functionals
determine a function on the local element spaces. For X0

T and Xgrad
T this is well

known, so we only consider Xcurl
T and Xdiv

T .
In other words we have to check, when the global functionals are zero on all edges
or faces, then the local function itself has to be zero. Therefore let qT ∈ Xdiv

T and
fdiv
F (qT ) = 0 for all faces of a tetrahedron. Computing∫

T

div qT dx =
∫
∂T

qT · n dsx =
4∑

k=1

∫
Fk

qT · n dsx =
4∑

k=1
fdiv
F (qT ) = 0

implies div qT = 0, thus qT has to be constant. Because of fdiv
F (qT ) = 0 for all faces

of a tetrahedron, qT = 0.
Let vT ∈ Xcurl

T and f curl
E (vT ) = 0 for all edges of a tetrahedron. Considering∫

T

curl vT dx =
∫
∂T

vT · τ d`x =
6∑
j=1

∫
Ej

vT · τ d`x =
6∑
j=1

f curl
E (vT ) = 0

implies curl vT = 0, thus vT has to be constant. Again, all functionals of vT are zero
and therefore vT = 0.
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3.2.5 Conformity of Global Functions
We know that our discrete sequence is exact and our global functionals are a basis
for global discrete functions. The last step is to check, if the global functions are
contained in H(curl,Ω) or H(div,Ω). For the other spaces this is clear.
So, for these two spaces we have to check, if the traces are continuous. Hence we
will show that the functionals restricted to a face F uniquely determine the trace
on the face F .
For H(div,Ω) we need that the normal component is continuous. Let qT ∈ Xdiv

T .
For a face F with unit normal n we have

qT · n =

c1
c2
c3

 · n+ a1

x1
x2
x3

 · n
︸ ︷︷ ︸

=||x||`2 ||n||`2 cos θ

∈ P0(F ),

where θ is the angle between x and n. Now let fdiv
F (qT ) = 0 for a face F ∈ F . Since

qT · n is constant and∫
F

qT · n dsx = 0 =⇒ qT · n = 0 on F.

So we have Xdiv
h ⊂ H(div,Ω). Consider H(curl,Ω), we need that the tangential

trace is continuous. Let vT ∈ Xcurl
T . Then we have for an edge with corresponding

tangential vector τ that

vT · τ =

c1
c2
c3

 · τ +


a1
a2
a3

×
x1
x2
x3


 · τ =

c1
c2
c3

 · τ +


a1
a2
a3

× V
 · τ ∈ P0(E),

where V is a vertex on the edge E. Again, let all functionals belonging to the face
F be zero, i.e. f curl

E (vT ) = 0 for all edges. Thus we have

0 = f curl
E (vT ) =

∫
E

vT · τ d`x =⇒ vT · τ = 0 on E.

Finally, we have to consider the trace of vT in H(curl), i.e. vT × n. Therefore let
V be a vertex of the face F with two tangential vectors τ1, τ2 leaving V . Then by
using the vector triple product (cf. [5]), we obtain

vT × n = vT × (τ1 × τ2) = τ1(vT · τ2)− τ2(vT · τ1) = 0. (3.3)

Since vT ∈ Xcurl
T is linear, also vT × n|F is linear. By applying (3.3) for each node

of the face we have vT × n|F = 0 and so we have shown that Xcurl
h ⊂ H(curl,Ω).

Summarizing, we have that the discrete finite element spaces are conforming.
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3.3 Transformation
The mapping trick plays an important role for the FEM. The physical elements are
seen as transformations of a local reference element of simple shape – here a tetra-
hedron. This construction has the big advantage, that many computations can be
done a–priori on the reference element and are afterwards transformed to the phy-
sical element – as illustrated in Figure 3.1. We only consider affine transformations

x̂1

x̂3

x̂2

p̂1

p̂3

p̂2

p̂0

ΦK

x1

x3

x2

p0
p1

p2

p3

Figure 3.1: Mapping Trick

which are continuously differentiable, bijective and onto maps, that means

ΦK : K̂ → K, with ΦK(x̂) = p0 + FK x̂,

where FK is the Jacobian matrix of ΦK . The matrix FK is given by

FK := (p1 − p0
... p2 − p0

... p3 − p0) ∈ R3×3.

If x̂ is a coordinate on the reference element K̂, then x = ΦK(x̂) is the corresponding
coordinate on the physical element K.

Remark. Using affine transformations simplifies the analysis of the finite element
method. One reason is, that the Jacobian and the determinant are constant over the
whole reference element. Furthermore, polynomials in K̂ are mapped to polynomials
of the same degree in K.

For proofing how gradient fields are transformed, we need to know how the inverse
transformations look like. The inverses are given by

Φ−1
K : K → K̂, with Φ−1

K (x) = F−1
K (x− p0).

3.3.1 Barycentric Coordinates
It is useful to replace Euclidean coordinates by barycentric coordinates, because we
know that they are invariant under affine transformations – cf. [1]. That means
that the coordinates of the point x are equal to the coordinates of x̂. Our reference
simplex K̂ resp. the convex hull of vertices is defined as the set

K̂ := {x̂ | 0 ≤ x̂i ≤ 1, 0 ≤ 1− x̂1 − x̂2 − x̂3 ≤ 1}.
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We get the barycentric coordinates by solving the linear system

x̂1

x̂3

x̂2

p̂1

p̂3

p̂2

p̂0


1 1 1 1
0 1 0 0
0 0 1 0
0 0 0 1



λ̂0

λ̂1

λ̂2

λ̂3

 =


1
x̂1
x̂2
x̂3

 ,

where λ̂i is the barycentric coordinate with respect to the vertex Vi. λ̂i(x̂) is defined
as the unique linear polynomial λ̂i ∈ P1(K̂) such that

λ̂i(Vj) = δij ∀ 1 ≤ i, j ≤ 4.

As a consequence of the system of equations is that

4∑
i=1

λ̂i(x̂) = 1 ∀x̂ ∈ K̂.

The barycentric coordinates are unique if and only if the four vertices are indepen-
dent (ger.: allgemeine Lage). Our points are independent, hence the barycentric
coordinates are unique. Since λ̂i is a polynomial, we can extend it to a global
function on our computational domain ω as follows:

λ̂i ∈ C(Ω) with supp (λ̂i) =
⋃

K̂:Vi∈K̂

K̂ and λ̂i(Vj) = δij ∀Vj ∈ V ,

where V denotes the set of vertices.
In our regime we have the barycentric coordinates

λ̂1 = 1− x̂1 − x̂2 − x̂3, λ̂2 = x̂1, λ̂3 = x̂2, λ̂4 = x̂3.

3.3.2 Tangential and Normal Vector
For our local spaces it is important to know, how the unit tangential vector and
how the outer unit normal vector are transformed – cf. global functionals. Because
of the importance of these two vectors, we will look how the corresponding physical
vectors are calculated.
Let τ̂ be a unit tangential vector on the reference element and n be a unit normal
vector on the reference element. We get the corresponding unit vectors on the
physical elements by

τ = FK τ̂

||FK τ̂ ||
, n = F−TK n̂

||F−TK n̂||
.

To verify the transformation of tangential vectors, one has to show for every tan-
gential vector τ̂ , that the corresponding τ = FK τ̂ is also a tangential vector.
If we consider the reference tetrahedron K̂ in Figure 3.1, the tangential vector
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τ̂ := x̂1− x̂0 = (1, 0, 0)T is mapped on FK(1, 0, 0)T = x1− x0. Hence, τ = x1− x0 is
also a tangential vector. For the remaining tangential vectors one can use the same
arguments.
The transformation of normal vectors can not be seen so easy. Here we only want
to motivate that normal vectors are transformed like gradients. The proof of this
transformation can be seen in Subsection 3.3.3. Let us consider the following tetra-
hedron:

x̂1

x̂3

x̂2

λ̂

τ̂1
τ̂ 2

Because of the definition of λ̂ we have

∂τ1λ̂ = 0 and ∂τ2λ̂ = 0.

We know that the tangential derivative can be written as

∇λ̂ · τ1 = 0 and ∇λ̂ · τ2 = 0.

From linear algebra we know that two vectors are orthogonal, if and only if the
scalar product of these two vectors is zero. Hence

∇λ̂ ⊥ τ1 and ∇λ̂ ⊥ τ2.

Summarizing, n̂ := ∇λ̂ is the normal vector of the face spanned up by τ1 and τ2.
Thus, the vector n̂ has to be transformed like a gradient.

3.3.3 H(curl) conforming Transformation
In H1, the transformation is simply the change of variables, i.e.

u(x) := û(Φ−1
K (x)).

Lemma 3.7. By using the transformation

u(x) = û(Φ−1
K (x)),

gradients are transformed like

∇u = F−TK ∇̂û(Φ−1
K (x)).
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Proof. Remember that Φ−1
K := F−1

K (x−x0). We consider the l–th component of ∂xk

from Φ−1
K (x), i.e.

∂xk

(
Φ−1
K (x)

)
l
= ∂xk

 3∑
j=1

F−1
K [l, j](x− x0)j

 = F−1
K [l, k],

where l, k = 1, 2, 3. Now we consider ∂xk
u(x). Using the chain rule we get

∂xk
u(x) = ∂xk

û(Φ−1
K (x)) = ∂xk

û(ξ̂1(x), ξ̂2(x), ξ̂3(x))

=
3∑
i=1

∂û

∂ξ̂i
(ξ̂1(x), ξ̂2(x), ξ̂3(x))∂(Φ−1

K )i
∂xk

=
3∑
i=1

∂û

∂ξ̂i
(ξ̂1(x), ξ̂2(x), ξ̂3(x))F−1

K [i, k]

=
(
F−TK ∇̂û

)
k
.

Since an element of H(curl,Ω) can be written as ∇w for a w ∈ H1(Ω), we suggest
for H(curl) the transformation

u(x) := F−TK û(Φ−1
K (x)). (3.4)

A proof of the following lemma can be found in [3].

Lemma 3.8. By using the transformation (3.4), the curl is transformed in the way
of the Piola transformation, i.e.

curlu(x) = (detFK)−1FK ˆcurl û(Φ−1
K (x)).

Knowing how elements in H(curl, K̂) and the corresponding curl are transformed
we show an important property of our transformation.

Theorem 3.9. Let K̂ be a reference element and K be a physical element. If an
û ∈ H(curl, K̂) is transformed in the way of (3.4), then u ∈ H(curl, K).

Proof. For ϕ ∈
[
C∞(K̂)

]3
we have

∫
K

u(x) · curlϕ(x) dx =
∫

Φ−1
K (K)

F−TK û(x̂) · (detFK)−1 FK ˆcurl ϕ̂(x̂)| detF−1
K | dx̂

= | detF−1
K |

detFK

∫
Φ−1

K (K)

û(x̂) · ˆcurl ϕ̂(x̂) dx̂

= | detF−1
K |

detFK

∫
Φ−1

K (K)

ˆcurl û(x̂) · ϕ̂(x̂) dx̂
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= | detF−1
K |

detFK

∫
K

(detFK)F−1
K curlu(x) · F T

Kϕ(x)| detFK | dx

= | detFK |−1| detFK |
∫
K

curlu(x) · ϕ(x) dx

Thus ∫
K

u(x) · curlϕ(x) dx =
∫
K

curlu(x) · ϕ(x) dx,

and u ∈ H(curl, K).

To close the transformation section we want to show that this transformation is
H(curl) conform, i.e.

• Gradient fields on K̂ are mapped onto gradient fields on K
Since we defined the transformation exactly the same as the transformation of
gradients, this is satisfied.

• The degrees of freedom are preserved by the transformations
Using our transformations, we see that tangential traces along edges transform
as

(u · τ)(ΦK(x̂))
∣∣∣
ΦK(Ê)

=
(
F−TK û(x̂) · FK τ̂

||FK τ̂ ||

) ∣∣∣
Ê

=
(
û(x̂) · τ̂ 1

||FK τ̂ ||

) ∣∣∣
Ê
.

With our setting FK = I, therefore | detF−1
K | = 1. Since FK = I and τ̂ is a unit

normal vector, we have that ||FK τ̂ || = ||τ̂ || = 1. Thus, | detF−1
K | = ||FK τ̂ ||.

If we consider the degrees of freedom, we have∫
E

u · τ d`x =
∫

Φ−1
K (E)

û(x̂) · τ̂ 1
||FK τ̂ ||

||FK τ̂ || d`x̂ =
∫
Ê

û(x̂) · τ̂ d`x̂.

3.4 Interpolation Error Estimates
With our setting for the finite element method, it would be possible to show Theorem
5.41 in [3]. Here we only consider a special case of this theorem, for the general one
and the proof see [3].

Theorem 3.10. Let Th be an admissible mesh on Ω and let u ∈ [C1(Ω)]3. Then

||u− Icurlu||[L2(Ω)]3 + ||curl (u− Icurlu)||[L2(Ω)]3

≤ C · h
(
||u||[H1(Ω)]3 + ||curlu||[H1(Ω)]3

)



Chapter 4

Conclusion

In this bachelor thesis we introduced physical laws which describe the phenomena
of electromagnetism. Combining these laws led to the Maxwell’s equations in their
classical form. A reformulation of these equations and using the material laws
brought us to the de Rham complex and the vector potential formulation. Many
different types of problems have the same structure. Thus, it was in our interest to
analyze the curl–curl problem.
Looking at the curl–curl problem we realized that we need a different integration
by parts formula. We also introduced a trace operator for functions in our function
space H(curl,Ω) to have well defined expressions in our weak formulation. In view
of the finite element method we looked for an interface condition, such that our com-
putational domain can be decomposed in several smaller domains without loosing
conformity.
When speaking about finite elements for Maxwell’s equations, we needed to define
local element spaces and global functionals to derive the finite element spaces. A
main goal was to achieve an exact discrete sequence – like the exact de Rham se-
quence in the infinite dimensional case. Therefore we introduced nodal interpolation
operators which should satisfy a commuting property. The global functionals were
derived by starting in the discrete space of L2(Ω) using the famous integral theo-
rems of Stokes and Gauss. An important step was to prove, if the finite element
space is a subset of the corresponding Sobolev space. For implementation aspects
we considered transformations from a reference element on the physical elements
and showed, that these transformations preserve the degrees of freedoms. Finally,
we cited an interpolation error estimate.
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