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Myopic Approaches for a Real World Palletizing Problem*

Florian Kagerer1, Maximilian Beinhofer1, Simon Hubmer2 , and Ronny Ramlau2,3

Abstract— In warehouse logistics, palletizing algorithms usu-
ally precalculate a pack pattern that determines the palletizing
sequence of load carriers (LCs). Whenever this sequence is
broken, troubles occur in robotic palletization. To overcome
this issue, this paper presents three approaches that determine
positions on a pallet for given LCs myopically, i.e., they avoid
precalculating a load carrier sequence in advance. Based on
simulations and experiments with a real robot, we show that
even though our approaches do not predetermine an LC
sequence, they produce reasonable palletizing results in a broad
range of trials.

I. INTRODUCTION

In warehouse logistics, pack pattern software is applied
to build stable and densely packed pallets. This software
precalculates a pallet with respect to assigned load carriers
(LCs), e.g., cartons or plastic boxes. Hence, a sequence of
the arrivals of the LCs is derived. Although such software
provides excellent results for a wide range of applications, a
violation of the predetermined sequence results in an enor-
mous performance loss in the automated system supplying
the robot with LCs. In addition, for many problems it might
be unnecessary to precalculate the whole packing in advance.

To this end, we developed myopic approaches, i.e., meth-
ods that avoid to predetermine an LC sequence, one by
one calculating a target position for the next (randomly)
arriving LC. These approaches were tested on a real robot
and benchmarked in simulations against a commercially used
(non-myopic) pack pattern software.

There is a wide body of research in palletizing methods
that can be used with robots [1], [2], [8]. Due to the
complexity of such bin packing problems, not only heuristics,
but also learning approaches were developed [3], [4]. In
contrast to our approach, which works myopically, these
methods generate predetermined LC sequences.

II. PROBLEM STATEMENT

The considered problem deals with the palletization of
LCs, whose footprints – 0.6m×0.4m (big) and 0.4m×0.3m
(small) – divide the base area of the palletizing target –
1.2m×0.8m. Hence, an LC occupies either a single octant or
a double octant (quadrant) of the pallet. Moreover, this paper
incorporates the stackability of an object, which depends
on its material (cartons, plastic boxes). On top of type 1
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Fig. 1: Experimental setup: robot with custom end-effector for palletizing
cartons. See [7] for a video of the experiments.

(cartons) it is only allowed to place objects with the same
footprint. Whenever two cartons with the small footprint are
equally high, their stacking behavior is identical to type 2
(plastic boxes). On these, both footprints can be stacked onto.

The robot we consider (see Fig. 1) moves LCs from front
right to back left to their target positions. Therefore, in order
to reach all target positions, piles in the front and right
octants need to be lower than those in the back and left.

III. APPROACHES

We developed three approaches for finding a position on
the pallet for an LC with respect to the mentioned restric-
tions. In general, these methods obtain (1) the current state of
the pallet, and (2) the properties of the LC. This architecture
was designed in consideration of reinforcement learning
methods, which search for an action based on a given state
of the environment. In order to make it unnecessary for an
agent to learn the existing constraints, the action space is
changeable, i.e., the agent only chooses its action out of the
allowed ones. An example is depicted in Fig. 2.

In addition, all methods share a rearrangement property.
Whenever no target position for the LC is found, the LC is
rejected and considered again after three others.

A. Heuristic

Firstly, we designed a heuristic that aims at creating pallet
states such that a 0.6m×0.4m LC can be placed on top of
as many quadrants of the pallet as possible at any given time.

(a) A(t1) = {o1}. (b) A(t2) = {o1,o2,o5}. (c) A(t3) = {o1,o3,o5}.

Fig. 2: The changeable action space A(t) during the palletization of three
identical load carriers. The yellow rectangles visualize the actions.
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(a) Visualization (b) Heights (c) Stackabilities

Fig. 3: Example for the virtual image representation of a state of the pallet.
LC colors: green – plastic box, yellow – carton.

Consequently, the heuristic tries to keep the heights of the
piles in two neighboring octants at the same level.

This method uses the exact state of a pallet and selects
one of the placements that satisfy the stackability and height
requirements. In detail, for LCs with a small footprint, the
algorithm chooses either the smallest pile or, if existing, the
smaller pile in a quadrant with two different heights. On
the other hand, for LCs with a big footprint, the algorithm
chooses the highest possible pile. The only exception: if for
big type 1 LCs there exist possible placements on top of
other type 1 LCs, then the smallest of these piles is chosen.

B. Q-learning

Secondly, we developed an approach that is based on
Q-learning. For details on Q-learning, see [6]. For this
approach, we defined the state of the pallet as a tuple that
contains the discretized height of the pile in each octant. The
rating of every state-action pair (deciding which action the
agent chooses at a given state) is stored in the Q-learning
table. Since a finer height discretization increases the size
of the Q-learning table, this is the restrictive factor in this
approach. During training, the ratings were updated at the
end of each episode, i.e., after palletizing of the whole pallet
was finished. The update of the rating depends on the filling
degree of the pallet, i.e., the palletized volume divided by
the maximum admissible one. Similar to neural networks,
not only the last, but also all visited state-action pairs are
updated, but we defined that the update rate decreases by
10% with each step back.

C. Deep Q-network

Thirdly, we created an approach that uses deep Q-networks
(DQNs) on image data to solve the palletizing problem.
DQNs receive an image and create different abstract rep-
resentations to obtain a single output [5]. Consequently,
we represented the state of the pallet as an image. See
Fig. 3 for an example. The height of each pile on the
pallet, which is stored in our software, is converted to the
value of a pixel in a virtual gray-scale image. Similarly,
the stackabilities of the uppermost load carriers defined a
second image which extends the information about the pallet
state. This conversion makes it possible to apply image based
approaches to solve the palletizing problem.

The input layer of our approach can either be a single
channel image, i.e., only the heights, or a two channel image,
i.e., heights and stackabilities on the pallet. Before the agent
takes an action depending on the approximated ratings, all

prohibited actions are removed. As before, the filling degree
of the pallet at the end of each episode defines the reward.

IV. EXPERIMENTS
We evaluated our three approaches both on simulation and

in experiments with a real robot. Up until now, the real robot
setup shown in Fig. 1 does not include a sensor for detecting
differences between planned and real LC heights. The robot
moves only based on planned positions. Qualitative tests with
the real robot have shown that two factors strongly influence
the quality of a built pallet: (1) the rate of small load carriers,
and (2) the rate of load carriers with type 1 stackability.

A. Simulation
For the simulations, we randomly created sequences of

LCs of mixed footprints and stackability types. We divided
the created dataset into training data for the machine learning
approaches and validation data. Rearrangement of LCs was
only allowed three times per episode. Whenever the approach
was unable to find a position for the next LC, palletization
was aborted and the episode was finished.

B. Results
At the end of each episode, the filling degree η was

collected and categorized. For evaluation, we created the cat-
egories Successful (η ≥ 85%), Tolerable (η ∈ [70%,85%)),
and Failed (η < 70%). Fig. 4 compares the performances of
the myopic approaches and a non-myopic benchmark.

The myopic approaches achieved a Successful or Tolerable
result in a reasonable amount of sequences, even though
not a single restriction was demanded on the sequence of
load carriers. Up until now, our implementation of the three
myopic approaches were not yet able to avoid Failed orders.
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Fig. 4: Comparison of the results from all approaches.

V. CONCLUSIONS AND FUTURE WORK
In this paper, we presented three myopic approaches

for robotic palletizing, which avoid to predetermine a se-
quence of load carriers: one heuristic and two reinforcement
learning approaches. Compared to conventional, non-myopic
approaches, ours provide more flexibility in the delivery of
load carriers to the palletizing robot. The filling degrees of
our produced pallets were in an acceptable range for a high
amount of scenarios, even though our approaches did not
place a single restriction on the sequence of the load carriers.

In future work, we plan to optimize our implementations to
further increase the achievable filling degrees. In our robot
setup, we plan to integrate a sensor detecting differences
between planned and real heights of the positioned LCs.
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